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Abstract 

A method to derive joint probability distributions of 
structure factors is presented which incorporates 
anomalous-scattering and isomorphous-replacement 
data in a unified procedure. The structure factors F ,  
and F_n, whose magnitudes are different due to 
anomalous scattering, are shown to be isomorphously 
related. This leads to a definition of isomorphism 
by means of which isomorphous-replacement and 
anomalous-scattering data can be handled simul- 
taneously. The definition and calculation of the gen- 
eral term of the joint probability distribution for 
isomorphous structure factors turns out to be crucial. 
Its analytical form leads to an algorithm by means 
of which any particular joint probability distribution 
of structure factors can be constructed. The calcula- 
tion of the general term is discussed for the case of 
four isomorphous structure factors in P1, assuming 
the atoms to be independently and uniformly dis- 
tributed. A main result is the construction of the 
probability distribution of the 64 triplet phase sums 
present in space group P1 amongst four isomorphous 
structure factors F , ,  four isomorphous FK and four 
isomorphous F-H-K. The procedure is readily gen- 
eralized in the case where an arbitrary number of 
isomorphous structure factors are available for FH, 
FK and F_n_K. 

c.f. 
j.p.d.('s) 
c.p.d.('s) 
p.r.v.('s) 
r.v.('s) 
s.f.('s) 
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Abbreviations 

Characteristic function 
Joint probability distribution(s) 
Conditional probability distribution(s) 
Primitive random variable(s) 
Random variable(s) 
Structure factor(s) 
Structure invariant(s) 
(Single-derivative) isomorphous 

replacement 
(Single-wavelength) anomalous 

scattering 

1. Introduction 

Most small structures can be solved routinely by direct 
methods nowadays but if the structural size exceeds 
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approximately 100 independent non-H atoms the 
conventional approach tends to be inadequate. Tradi- 
tionally, direct methods processes a single non- 
anomalous data set. After the normalization, the 
phases related to the largest IEl's are determined and 
refined successively via a tangent phase expression 
(Karle & Karle, 1966). This technique relies heavily 
on the quality of the phase-sum estimates. Their 
decrease in reliability for larger structures leads 
readily to phase-error accumulation which may 
obstruct a successful structure determination. On the 
other hand, it is well known that macromolecules can 
be solved by means of the isomorphous-replacement 
(IR) technique, often supplemented by anomalous- 
scattering (AS) data. The former technique (e.g. 
Srinivasan & Parthasarathy, 1976) requires data col- 
lection of at least two isomorphous structures, e.g. 
the data of a native protein and a heavy-atom deriva- 
tive. Although in practice isomorphism tends to get 
lost at higher (sin 0)/;t, the number of available 
intensities increases markedly while the number of 
variables, the atomic positions, increases only mar- 
ginally. A similar result can be achieved with AS (e.g. 
Ramaseshan & Abrahams, 1975). If the X-ray 
wavelength is selected near an atomic absorption 
edge, Friedel's law breaks down and the number of 
available intensities doubles. The wavelength depen- 
dence of AS suggests the collection of several data 
sets, each at a different wavelength near an absorption 
edge. 

Traditionally, IR and/or  AS data are expressed 
algebraically in the phase differences and magnitudes 
of substructures. Their implementation in a phasing 
procedure requires an initial phasing model for which 
purpose the heavy-atom substructure usually must be 
solved first. 

More recently, attempts have been made to fuse 
the algebraic approaci~ of IR and AS data with direct 
methods in order to circumvent the solvation of the 
heavy-atom substructure. Kroon, Spek & Krabben- 
dam (1977) were the first to combine the conventional 
Bijvoet difference technique for anomalous-disper- 
sion data with estimates of double Patterson quan- 
tities. After a scaling procedure, they obtained triplet 
estimates unique on the interval (0, 7r). This pro- 
cedure could be improved by estimating the double 
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Patterson quantities probabilistically (Heinerman, 
Krabbendam, Kroon & Spek, 1978). Karle (1980) 
showed that an algebraic analysis of multiwavelength 
data leads to simultaneous equations of wavelength- 
independent quantities. In order to get phase esti- 
mates the triplet phase sums of the heavy-atom sub- 
structure are assumed to be concentrated near zero 
(Karle, 1984). Recently, Klop, Krabbendam & Kroon 
(1989) combined algebraic analysis results of two- 
wavelength anomalous-dispersive data of a single 
structure with the joint probability distribution 
(j.p.d.) of Hauptman (1982b) in order to estimate 
triplet invariants. 

Alternatively, the j.p.d, of the structure factors 
(s.f.'s) involved may be derived which does not 
require necessarily the prior knowledge of the heavy- 
atom substructure nor the introduction of non- 
measurable substructural quantities. Hauptman 
(1982a) and more recently Giacovazzo, Cascarano & 
Zheng Chao-de (1988) obtained expressions for the 
triplet phase sum which are valid for single-isomor- 
phous-replacement (SIR) data. Distributions for the 
triplet invariant in the single-wavelength anomalous- 
scattering (SAS) case were derived by Hauptman 
(1982b) and Giacovazzo (1983a). Fortier & Nigam 
(1989) showed that the SIR and SAS expressions and 
formulae for the partial and the complete structure, 
in which AS is neglected (Giacovazzo, 1983b), are 
analogous if the data sets are considered to be isomor- 
phous. They suggested that a particular j.p.d, needs 
to be derived only once for a single combination of 
isomorphous data sets. 

None of the above procedures combines AS data 
simultaneously with IR data in a general probabilistic 
derivation procedure. In this paper a technique is 
presented which does realise that very incorporation. 
The derivation procedure is based upon a previously 
described technique to derive automatically j.p.d.'s 
[Peschar & Schenk (1987); from now on P&S] but 
it is adapted in order to cope with complex-valued 
atomic scattering factors and isomorphism. It is 
demonstrated that F ,  and F_/a, different due to AS, 
can be handled effectively as isomorphous s.f.'s, each 
corresponding with a different isomorphous structure. 
This concept enables the incorporation of IR and AS 
data in a single mechanism. It is argued that only the 
general term of the distribution of isomorphous s.f.'s 
needs to be defined and calculated. Once its analytical 
form is known, any j.p.d, can be constructed by com- 
bining the expression for the general term with the 
derivation mechanism described in P& S. The calcula- 
tion of the general term is discussed in detail for four 
isomorphous s.f.'s in space group P1 but the resulting 
formulae are readily generalized to an arbitrary num- 
ber of isomorphous s.f.'s. A main object of this paper 
is to derive the j.p.d, of four isomorphous s.f.'s FH, 
four isomorphous FK and four isomorphous F-H-K. 
This leads to a j.p.d, of twelve s.f.'s comprising 18 

two-phase and 64 unique three-phase invariants. The 
final expression has been constructed from the separ- 
ate general terms with the help of a computer program 
and turns out to be expressible in such a way that 
the generalization to an arbitrary number of isomor- 
phous s.f.'s is apparent. Finally, concise formulae are 
given for the conditional probability distribution 
(c.p.d.) of the two- and three-phase s.i.'s which 
encompass the SIR expression of Giacovazzo, Cas- 
carano & Zheng Chao-de (1988) and the SAS 
expressions of Hauptman (1982b) and Giacovazzo 
(1983a) as marginal distributions. 

2. The joint probability distribution of structure 
factors. Inclusion of anomalous dispersion 

In the recently developed method for deriving 
automatically j.p.d.'s of s.f.'s in any space group 
(P& S), the atomic scattering factors were considered 
to be real-valued. In order to cope with anomalous- 
scattering data the allowance for complex-valued 
scattering factors should be introduced. 

The curve of the complex-valued scattering factor 
~ ( H ) ,  including anomalohs-dispersion corrections, 
versus (sin 0)/A differs for the various atom types. 
The dependence of ~ on the atom type j and the 
reflection H can therefore not be omitted, 

f j (H )  =fro = Ifj.I exp [iam ] 

or, equivalently, 

fm  = fTH + fjH + ifTH 

(1) 

with f T , ,  f j ,  and f ~  the non-anomalous scattering 
factor, the real and the imaginary anomalous correc- 
tion factors, respectively. 

In analogy to P&S, the general-valued s.f. is defined 
as a sum of n ( = N / m )  contributions involving N 
atoms in the unit cell and m symmetry operations. 
Each operation consists of a 3 × 3 rotational matrix 
R and a 3 x 1 translational matrix T. H denotes the 
1 × 3 matrix of reciprocal coordinates and Xj the 3 x 1 
coordinate matrix of rj, 

with 

n 

Fn = E ~nfjn (2) 
j = l  

T H 

~ ,  = m,, 2 exp [ 2 rri(HR,Xj + HT~ ) ] (3) 
s = l  

and multiplicity rn. (>_ 1) (m = r n m . ) .  
For s.f.'s with a phase restriction to A and A + rr 

with O<-Zl < rr a more convenient expression is 
(* means complex conjugate) 

G, = , " -  { G ,  + ~:.;*} (4) 
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with 

Sr;H = exp ( iA ) Y exp [ 2 zri( H R , X j  + HT~) ]. 
$ = 1  

(5) 

r~  operations can always be selected from the total 
ru such that (4) is real (see P&S). 

In our derivation technique the reflections are fixed 
while the atomic positions 0 act as the p.r.v.'s. As a 
result, the magnitude and phase of the general-valued 
s.f.'s of H~, being functions of the 0, are themselves 
r.v.'s, denoted R, and q~ respectively. Similarly, the 
phase-restricted s.f. of H,~ is a r.v., denoted F, .  Hen- 
ceforth, all variables dependent on or associated with 
H,  or H,~ are referred to via the subscripts v and/z .  

The j.p.d, of ! general-valued s.f.'s and r-value- 
restricted s.f.'s can be set up in a standard way (Naya, 
Nitta & Oda, 1964, 1965; P&S), 

P(  R~, . . . , Rt ,  ~ , .  . . ,  ~ t ,  F~, .  . . ,  Fr) 

= R , . . .  R~(27r) -2~-r 

x 7  7 2" 2" °° . . . . . .  I . . . . 1 "  . . .  
-~x~ - a o  0 0 0 0 

x e x p [ - i { Y . [ p , R ~ c o s ( O ~ - ~ ) ] + Y . , = ~  b t = l  F~I'/M.}] 

x C ( p , , . . . ,  pt, Ol, . . .  , OI, ldl , . . .  , Ur) 

x dp~ . . .  dpt d0~ . . .  d0~ du~ . . .  du,. (6) 

With the c.f. C in (6) being 

({ C =exp  In exp i ~ ½[P. exp ( - i O . ) f ~ . ~ .  
j = l  v = l  

+ p .  exp (" * * 

t t* + Y. fj,,.,.[scj. + ~: ; . ]u .  . (7) 
k t = |  r l 

A Taylor-series expansion of the exponential argu- 
ment of the logarithm in (7) yields 

{ 1t l ' /  [ __/3, ..... ~ 1 C = exp I n  ~ - - n m a x t l r l a l  . . . . . .  1,3' . . . . . .  3 ' ,J  " 
j = I n m a x = 0  

(8) 

U n m a x  c a n  be expressed [combining equations (16) 
and (24) of P&S] as 

U . m ~ .  =  Lat.:F 
a l  ..... at,/31 ..... /3t,3q ..... 3 , , = 0  

Otl + . . . + O t l + [ 3 1 + . . . + [ 3 1 +  3"l '4-. . .+ ~r  = n m a x  

} ,:~ [ 2 g~+'.a----~ !/3---- ! exp [ i 0 ~ ( / ~ -  a")] 

~-1 ( iu,, ) 3"/I , 
x { T. -  J (9) ~=,  ~ ,nqyi:~'.3", ..... 3". 

with 
m ,, ..... ,, Ot I , . . . ,  Ot I, 3"1,--., 3"r 

{ 1 X ]-] f / . [ ' -  exp[it~j,T, ] 
~ = I  

3"I "Yr 

x y. . . .  y~ 
oq+ i , /3t+ t =0 ~l+r,13l+r=O 

O¢1+1 + J[~l+ I = 3"I Otl+ r + ~ l + r  = 3"r 

T ~ ! . . . % !  rn ~, ..... ~"~'+, ..... ~'+, ( I0 )  
O t l , . . . , O t l , ~ l + l , . . . , t ~ l + r  

m + , ! 1 3 t + , ! .  . . a r ! 1 3 r !  

and 

m ~ p . . . , ~ l + ,  
~ l , . . . , ~ l + r  

0~I Oil J~l-l-r J~l+r 

-- Y . ' E  ' E ' " E  
~ l l = O  a r t  I = 0  / 3 n = O  ~l,t+ = 0  
oftt  + ' " + o f t  Tl = O~Z /311 + " "" +/3t~.t + f= r f l l+  r 

I Ihr / I+r~'v 1 
v=l u=l s=l 

xexp 2 ~ i |  Y N ( ~ . ~ - ~ . , ) H . L  
I.. v = I s = l  

x t2 iL  ' x,  , .  

(11) 
Note that for v = l + 1 , . . . ,  l + r half of the symmetry 
operations should be used, in accordance with (4)- 
(5). 

The scattering-factor product in (9)-(11) does not 
change the moments calculation as defined in P&S. 
Hence the average in (11) can be executed as in P&S, 
assuming the atomic coordinates to be uniformly and 
independently distributed. As a consequence, the 
argument in P&S concerning the moments-  
cumulants transformation and the taking of the 
logarithm in (8) also carries over completely. Only 
the last step to the c.f., adding the contributions of 
the n p.r.v.'s in (8), leads now to a different result. 
The dependence on both the reflections and atom 
types leads to a sum of scattering factors, defined in 
(13), which may be different for each cumulant, 

{ ° ° .  rz~ ~, ...... k-~, ,, . . . . .  l }  C = e x p  Y. ~ n  . . . . .  , . . . . . .  I,Y .. . . . .  " y , - -  oq . . . . . .  ,.3" . . . . . .  y , j  
n r n a x = 2  

(12) 
wi th  

Z~, ..... ~l ~ 1 , . . . , ~ 1 , ~ 1 , . . . , ~ ,  

j = l  v = l  

N = I  
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The Taylor-series expansion terms are arranged such 
that Unmax contains only terms of order N -(nmax/2-1). 

The final step to the j.p.d, is the Fourier transform 
of (12). In order to end up with an integrable 
expression (12) is split into an exponential containing 
all terms with nmax = 2 (order N °) and an exponen- 
tial consisting of all terms of at least order N -°5 
(nmax->3). The latter is expanded with a Taylor- 
series expansion and the resulting series rearranged 
once again according to nmax. In order to perform 
the integrations term by term most efficiently only the 
general term of the distribution needs to be identified 
and integrated. The general term of a j.p.d, is defined 
as the exponential containing all the nmax = 2 terms 
times a general product of all integration variables 
involved. Since the latter is always separable, the 
exponential defines the functional form of the 
integrated general term. After the integration of the 
general term the complete series expansion can be 
constructed simply from the separate terms. In a final 
step, this series expansion may be transformed back 
into exponential form using x = exp [In (x)]. It has 
been shown for numerous cases that this transforma- 
tion leads to identical distributions as if they were 
derived by hand under the same premises (Peschar, 
1987). 

Both AS and IR data influence the general term 
via nmax = 2 terms. It turns out to be convenient to 
treat them simultaneously with the following 
isomorphism model. 

3. Isomorphic structures and isomorphic data sets 

In spite of their physical difference, IR and AS play 
a similar practical role: both techniques increase data 
without increasing the number of unknowns appreci- 
ably. This suggests that isomorphism should be 
advantageous in treating both type of data simul- 
taneously. Recently, Fortier & Nigam (1989) eluci- 
dated the similarity between distributions in the SIR 
and SAS cases by introducing the concept of isomor- 
phous data sets. They separated the anomalous- 
dispersion data into two distinct data sets, the FH 
and the F-H, which were handled as being isomor- 
phous. 

As Fortier & Nigam acknowledge, intensity 
differences between isomorphous s.f.'s result from 
differences in scattering factors. This suggests a direct- 
space isomorphism as a suitable starting point. In 
this paper structures are considered to be isomor- 
phous if the cell constants, space-group symmetry 
and atomic positions are identical. The only 
difference between isomorphic structures being the 
atomic scattering factors which are allowed to be 
complex-valued. 

Hence, a s.f. Gn will be isomorphous with FH if 
the s.f. expression is the same as for FH in (2) except 

for the scattering factors, 

GH = ~ ~jngjH. (14)  
j = l  

Consider now the s.f. F* n which can be expressed as 

n 

F*-H = 2 ~*Hf*A = ~ ~Hf*H. (15) 
j= l  j= l  

Obviously, F * ,  and FH are isomorphously related. 
Moreover, a distribution derived for F * ,  instantly 
yields the corresponding expression involving F _ ,  
because ]F*_H] = IF_HI and the phase of F*_ H is minus 
the phase of F_H. 

Consequently, the j.p.d, derivation for isomor- 
phous structures is equivalent to the derivation of a 
j.p.d, of isomorphous s.f.'s provided the F _ ,  are 
entered in either of the following ways: 

(a) as F _ , ,  taking - H  in (11) a n d f  m as scattering 
factors; 

o r  

(b) as F'H, taking H in (11) andf*n as scattering 
factors. 

4. The general term of the joint probability distribution 
of isomorphous structure factors in space group PI 

The definition of the general term of the j.p.d, of an 
arbitrary (l) number of isomorphous s.f.'s in space 
group P1 requires the identification of the exponen- 
tial contributions for which nmax = 2. 

The following abbreviation is adopted, 

F.= F.° 

with (16) 

H , = s , H  and s , = + l  n r ( 1 , . . . , l ) .  

The r.v.'s for the phases ~o, and the magnitudes IF,] 
are referred to as q', and R,,. 

The average in (11) evaluated for (16) in space 
group P1 leads to the following condition for the 
non-zero terms with nmax = 2: 

(a,,.-fl,,.)Hm +(O4,-fl.)H. =O 

for (17) 

m, n e { 1 , . . . , l }  and m<-n. 

The only contributors are 

1. a , . = a . = l  o r / 3 , . = / 3 . = 1  

if H,. = - / 4 .  with m ¢ n; 

2. a , . = f l . = l  orf lm=a,.=l  

if Hm = 14. with m r s n; 

3. a ,  =/3. = 1 for all H,. 
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This reduces expression (13) to a simpler formula.  
For m<- n with m, n ~ { 1 , . . . ,  l}; 

with 

z~.=lz~.lexp[iA,..] 
N 

: Z [ f jml l f j . l exp[ - i (S j , .+sm.Sj . ) ]  
. j = l  

will be rearranged into the form 

oo2~v 

I=~7r-2[i/2] M'*M ~ ~ P 
0 0 

M + M ' + I  

(18) x exp [_~p2  _ ip Y'k Ck COS ( 0 +  ~'k) 

+ l  if , , ,  = H,  
s,,, = 1 if H m = - n , .  (19) 

Expression (19) is equivalent  to the condit ion H,,, 4- 
s~,H, = 0. It can simply be shown that from three of  
these condit ions,  Hi = sill, H,, = s,,H and H,  = s,H, 
the following relations can be derived: 

S i m S i .  = - - S t u n  for i, m, n e { 1 , . . . ,  1} 

and (20) 

sd,, =-sin, for i, m 6 { 1 , . . . ,  1}. 

The general term G T ( H I , . . . , H I )  can now be 
expressed as 

o o  2w 

R, R,I I G T :  (2~i27 .-- P , . . - P l  
0 0 

i 

x e x p  [ip, R.  c o s ( O , - ~ , ) ] - E  I 2 - -  ~ p  n Z n .  
. = 1  - : 1  

(21) 

I - I  I 
1 - Z Z [~p,,,p.lz, . .Icos(O,,,+s,. .o.+a,,, , ,)] 

m = l  . = 2  
m < .  

+ ,,=1 ~ i0,( f l , , -  a,) ]  [½ip,]°"+#'... [½ipl] °q+#' 

× d01 .. • d0t dpl • • • dpl. 

If al  =/31 = . . . =  a l = / 3 1 = 0 ,  the GT reduces to the 
j.p.d, of  R t , . . . ,  Rt, ~ , . . . ,  ~t correct up to 0(N°) .  

5. The integration of the general term 

The general integration procedure  of  (21), executed 
in successive steps, will be discussed first (i). Sub- 
sequently,  this scheme will be appl ied to the case of  
four i somorphous  s.f.'s resulting in an expression for 
the general term (ii). Finally, a generalization to the 
case of l i somorphous  s.f.'s is given (iii). 

(i) General integration procedure 

The integration of  (21) can be executed in I succes- 
sive steps, each step consisting of  both a p and the 
corresponding 0 integration. In each step the integral 

+ i O ( M ' -  M ) ]  d0 dp. (22) 

The Ck are in general complex-valued and dependent  
on the remaining integration variables. 

With Ck = ak + ibk ( a k  and bk real) and the functions 
X, Y defined as 

X = • ak exp [ i~k ] + i Z bk exp [ i~k ] 
k k 

and (23) 

Y =  Z ak exp [--i~'k] + i Z bk exp [--i~k], 
k k 

(22) can be shown to result in (see Appendix  I) 

I =  "rr-' exp [ - X Y ] K M ,  M,(X, Y) 

with (24) 

KM, M,(X, Y ) =  M' !  ~ ( -1 )k  x M - k y  M'-k 
k = o  

In each integration step m the following scheme is 
employed.  

(a)  A variable t ransformat ion  is used in order  to 
express the quadrat ic  exponent ia l  term as shown in 
(22). 

(b) All exponential  terms which depend on 
cos (0,,) are collected which enables the definition of  
the functions X,, and Ym as in (23). 

(c) The identification of  M and M '  using the 
powers of  p and exp (iO). 

(d)  The calculation of  XmYm in (24) and the 
expansion of  KM, M' using (I .18)-(I .19).  

The functions Xm and Ym to be defined in step m 
each consist of a sum of  ! terms, Xm = X , , l +  
x,,2 + . . .  + x,,t and Y,. = ym i + Ym2 +. • • + Y,,a if l s.f.'s 
are involved. 

The mult inomial  expansion of  X,. and Y,. in (24) 
leads to a series in the terms x,., and y,.,,, the powers 
of  which are denoted rm, and t,,. respectively 
[ n e  ( 1 , . . . ,  1)]. 

This mul t inomial  expansion and the dependence  
of  X,, and Y,, on the integration variables leads to 
a nested sequence of series expansions.  The summa- 
tion limits M,, and M "  in each step m are determined 
by previous expansions but determine themselves 
in turn in successive expansions.  The nested series 
NS ( H I , . . . , / - / i )  which is generated in this way can 
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be expressed in a recursive form 

NS ( H ~ , . . . ,  Ht) = g M...M.',[ Xm, Y,n, K M ...... M;,, ,] 

f o r m - - I , . . . , !  (25) 

with 

and 

K v,,,.M,;,[ X,., Y,., K u ..... M;,, ,] 
M' 

k=O ( M ' - k ) !  

x [  Y~]~,;,-k g M . . . .  ~,~+, 

[Xm]~,° -k 

K Mt+~.MI+ ~ = Ko.o = 1. 

(ii) The calculation o f  the general term for  four  
isomorphous s . f ' s  

The procedure described in (i) has been worked 
out in detail for four isomorphous s.f.'s as defined in 
(16). The integrations for p,, and Or, are executed 
starting with m = 1, 2, 3 and finally m =4.  In each 
step additional variables are introduced in order to 
relieve the notational complexity. The variables are 
referred to via subscripts. A single subscript number 
denotes both the r.v. it is associated with and the step 
in which the definition of the variable takes place. 
Two subscripts, as in x,,,, for example, refer both to 
the r.v.'s and in addition the first (m) denotes the 
step in which the variable is defined. The following 
functions are used throughout all derivation steps: 

a,,,,,=la,,,,lexp(iotm,, ) for m , n ~ { 1 , . . . , l }  (26) 

t,,, if sin,, = 1 
"rr?l n 

r,,,, if s,,,, = - 1 

and 

with m, n ~ { 1 , . . . ,  !} 

(27) 

with m, n e { 1 , . . . ,  l} 
, {tin. if s,.. = - 1  

r , . , .= r.,. i f s , , , . = + l  

in which s,.. follows definition (19). 
The four steps will now be discussed in some detail. 

Step 1. Inspection of (20) suggests a variable trans- 
formation, applicable to all four O's, 

y , = p , ( z , , )  ~/2 f o r n = l , . . . , 4 ,  (28) 

which leads to the introduction of the following vari- 
ables: 

& .  = z , . . ( z m = ) - ' / 2 ( z . . )  - I /~= Id=.l exp ( iAm.) 

for m, n e { 1 , . . . , 4 }  and m<-n (29) 

E , = R , ( z , , )  -~/2 for n = l , . . . , 4 .  (30) 

After collecting all terms in the exponential which 
depend on cos (0~), Xt is defined as [ Y~ can be simply 

constructed from X, with (23)] 

Xi = Gl exp (-ici91) 
I. 

- ~z[y2d12 exp ( is~202) + y3dl3 exp (is1303) 

+ y4d14 exp (isi404) ]. (31 ) 

For notational reasons G~ ~ E~ has been introduced. 
By definition, C ~ , - 1 . 0 .  The powers of Yz and 
exp (iOt) define M and M '  as 

M~ = a , ;  M'~ = 13,. (32) 

Step 2. After collecting all Y2 terms in the exponen- 
tial the following variable transformation leads to the 
required exponential quadratic expression: 

u2=y2C2-~ with C22=[1-1d,212] -'/2. (33) 

Subsequently, the cos (02)-dependent terms in the 
exponential define the variables 

a2, = C221dl21 exp (is,23,2) 

a23=C22{[d,211d,31exp[is,2(za,2-a,3)]-d23} (34) 

a24 = c=(Id,d Id,.[ exp [is,2(al,2- all4)] - d24}. 

As a result X2 becomes 

X2 = -G~a2~ exp ( is~20~) + G2 exp ( - iO2)  
1. 

+~1[y3323 exp ( i s 2 3 0 3 ) + y 4 3 2 4  exp ( i s2404)  ] (35) 

wi th  G2 = C22E2 • (36) 

Collection of the powers of  u2 and exp (i02) leads 
to 

M 2 = 3 2 +  r i 2 ;  M~ =/32+ r l2 '  • (37) 

In steps 3 and 4 the same procedure is followed as 
in step 2, resulting in the following definitions. 

Step 3. 

u 3 = y 3 C 3 ~  with C.3=[1-1d,312-la231q -'/~ (38) 

a3, = C3311d,31 exp (is,33,3) 

+ la=,l la=,l exp [ is23( 323- 32,)1} 

a32----- C3311023 [ exp (is23323)] 

a34 = C33{Id,,l Id,41 exp [i&3(d,3 -- d,4)] 

+la2311a241exp[is23(~23-a24)]-d3~} (39) 

X 3 = - G l a 3 1  exp  (isl3tibl) 

+ G2a32 exp  ( i s 2 3 ~ 2 ) +  G 3 exp  ( -  i~)3) 

+ ½iy4a34 exp  (is3404) (40) 

G3 = C33E 3 (41) 

' ' (42) M3 = 33 + rl3 + r23; M~ = f13 + r13 + r23. 
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Step 4. 

U4= y4Cg~ 1 with C ~ = [ 1  -Id,412-142412-143,12] -'/~ 
(43) 

aal = c4,{Id,al exp (is14AI4) 

+ 1424[ 10211 exp [ is24(424 - otzl)] 

+ la,,l la~ll exp [ is34 ( 01f34 -- 0f31 ) ]} 

a4z = C44{la24[ exp (bs24a24) 

+ lanai 1a~21 exp [ is34 ( 01f34 - -  O1~32 ) ]} 

a,3 = C~,[la~,l exp (is34o1~34) ] (44) 

X4 = - G1a41 exp (isi4t21~1)+ G2a42 exp ( is24~2) 

+ G3a43 exp (is3aqb3) + G4 exp ( -  iqb4) (45) 

G4 = C44E4 (46) 

M4 = at4+ 7-14+ 7-24 + 7-3a; 

' ' ' (47) M~ =/34+ 7"14+ 7"24 + 7"34" 

The following shorthand is introduced: 

A~.=am~Cn.  f o r m < n  and m , n ~ { 1 , . . . , 4 }  

(48) 

as well as the functions L,.. = It,,..[ exp (iA,..) with 
m _< n. By definition, L,,,. = L.,,, with m -< n. For rn, n 
{ 1 , . . . ,  4} the L,.. are specified as 

It l l l  = -½[1  +la2112+la~'l =+ [aa,lq, ~,1 = 0 

LI= = 10211 exp (U12a21) 

+ ]a311 la321 exp [ is13(a31- a32)] 

+ laa,[ 14421 exp [ is,4(0~41 -- 442)] 

Z .  = la~,l e x p  (is,3~3,) 

+ 1a41[ laa3[ exp [isi4 (44, -- 443)] 

Li4 = la41l exp (is140t4,); 

IL221 =-½[1  + la3=l = + l a , # ] ,  ~22=0 

L23 = -la321 exp (is23a32) 

- ] a 4 2 [  la,31 exp [is24(442- 01~43)] 

L24 = - l a . 2 l  exp ( iS2401~42); 

I t . l =  -½[1 + laa~r]; 433=0 

L34 = -[aa3] exp (is34o~43); [L441 = -½; Aa4 = 0. (49) 

The integrated expression for GT(H~ ,  1-12,143, Ha) 
can now be noted: 

-1/2(%+/3 +1)¢~(,~,+13 +l) G T =  77" -4 Gn(  znn ) n ~ nn 
=1 

x exp ~ 2G~G.IL~.I 
1 .=1 

¢lri " ~ : .  

× COS (¢I)ra + SmnCl~n + A m , ) ]  Q ( H I , . . . , / - / 4 ) .  
, .J  

(50) 

Q ( H I , . . . ,  H4) in (50) is defined as in (25) (with 
l = 4) but with T,. instead of  X,. and T* instead of 
ym, 

Q (  H I  , . . . , H 4 )  = K ~,..M,;,[ T . , ,  T * ,  K ~ . . . .  M.;,+,] 

for m =  1 , . . . , 4  

with 

and 

TI = 

K um.M;,[ Tm , T * ,  KMm÷,,M.;.,] 

k)t k = O  

x [ T * ]  M";-k K M..+,.MZ+, 

g Mt+I,M[+ t = Ko.o = 1 

[T, . ]M..  -~ 

G1 exp ( - i~1 )  - G2A12 exp (is12~2) 

-- G3A13 exp (is13¢~3) -- G4A14 exp ( i s ! 4 ~ 4 )  

7"2 = -G1421 exp (is21 ~1) + G2 exp ( - i ~ 2 )  

W G3A23 exp (is23(1)3)W G4A24 exp (is24(I)4) 

T3 = -G1a31 exp (is31 ~1) + G2a32 exp ( is32~2) 

+ G 3 exp ( - i tP3)+  G4A34 exp (is34t~4) 

T4 = -G~a41 exp (is41 cI9~) + G2a42 exp ( is42~2) 

+ G3 a43 exp ( is43 tJb3) + G4 exp ( - i~4). (51 ) 

Comparison of the definitions of  X. and Y. with 7". 
leads to the conclusion that the integrations change 
½iy.am. into G.Am. and ½iy.am. exp(is , . .O.)  into 
G.a,~. exp ( i sm.~. )  which comes down to changing 
X .  into 7". and Y. into T* .  

(iii) Generalization to ! isomorphous s.f.'s 

A detailed analysis of the above definitions and 
additional calculations with more s.f.'s, not shown 
here for briefness, indicates a generalization to the 
case of I isomorphous s.f.'s. The variables defined in 
a particular integration step n (>1)  turn out to be 

Step n, l <n<- l .  

u. = y . C ~  with C..  = 1-1d ,  n] 2 -  laknl 2 
k=2 

(52) 
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G . = E . C . .  

a,,, = C . . {  [d,.[ exp (is,,,A,.) 

+ I"~.1 a k l ] e x p [ i s k . ( o t k . - a k , ) ]  . 
k = 2  

For 1 < j  < n 

a.j = C. .{  laj.l exp ( isj.aj.) 

n--| } 
+ Y lak, l lakj lexp[isk . (a~,-~j)]  

k = j + l  

(53) The definitions of the Lm. functions are 

IL..I = -  1 + E la,,,,I ~ 
k = n + l  

and a,,,, = 0  

for n = l , . . . , /  

and for 1 -< m < n -< 1 (L.,,, -- L,..) 

L, . .=q, . { la . , . lexp( is , . .a . . , )  

} + F. [ak,~Ilak.Iexp[is,~k(akm-~k.)] 
k = n + l  

in which q , , , = + l  i f m = l  and q , , , = - I  i f m ~ l .  

(59) 

and f o r n < j - < l  

a,,j = C,,.{ d,,, I d~j exp [is , . (A, .  - A1j)] - d,,j 

n - I  } 

+ E la~.l akjlexp[isk.(Otk.--Otkj)] (54) 
k = 2  

X,, = -G,a,,~ exp ( is,,, cI),) 
n--I 

+ ~. Gka,,k exp (iSk,,~k)+G,, exp (-iq),,) 
k = 2  

! 

+ ~, ~iyka,,kexp(iS, kOk) (55) 
k = n + l  

n--1 n--I  

M . = a . +  Y~ r k . ; M ' = ~ . +  Y. r'k.. (56) 
k = l  k = l  

The integrated expression for the general term 
GT ( H I , . . . ,  Ht) becomes 

G T =  rr -I G.(z..)-l/z(".+t3.+~)C ('.+&+l) v t a n  
I 

x exp • 2amo. Iem. I 
I n = l  

wl~rl  

xcos  ( qg,, + s,,,cI), + A,~,) ] Q( H~ , . . . , Hi). 

Q ( H ~ , . . . ,  Ht) is defined as in (51) with 

I 

TI = GI exp [ - iq ) , ]  - Y~ A,nGk exp [iSlkt~k] 
k = 2  

(57) 

and 

7". = - G l a . l  exp [ is.l ~l] 
n--I 

+ Z Gkank exp [iSnk~k]+ Gn exp [ - i ~ , , ]  
k = 2  

1 

+ ~ GkAnk exp [iSnkCI)k]. 
k = n + l  

(58) 

nm?l  

and 

6. The joint probability distribution and the conditional 
probability distribution for the two-phase invariants 

The j.p.d, of the phases and magnitudes of I isomor- 
phous s.f.'s correct up to 0 ( N  °) is directly obtained 
from (57) since up to this order Q ( H I , . . . ,  Ha)=  1. 
Hence, 

P( R1, dPl , . . . ,  Rt, ~l) 

[ , , 
= C - '  exp 2 Y~ ~ Gr, G, IL,,,[ 

m = l  n = l  
m -~ n 

xcos ( qb,,, + s,,,,, q). + A,,,. ) ] (60) 

with C -~ a normalization constant. 
Expression (60) contains l ( l -  1)/2 two-phase s.i.'s, 

~ , . .=qb , , ,+s , . .@.  with m < n ~ { 1 , . . . , l } .  (61) 

The c.p.d, for each of the two-phase s.i.'s may be 
calculated from (60) in the usual way by fixing the 
magnitudes and integrating out the phases which do 
not take part in the two-phase s.i. This procedure 
does not lead to a convenient analytical expression 
but to a complicated summation. 

Alternatively, a phase which forms no part of the 
invariant under investigation can be expressed via a 
marginal distribution in a phase which does form part 
of the invariant (e.g. Hauptman,  1982a; Peschar, 
1987). From the marginal distribution of (61) it fol- 
lows that 

(exp (iq),,,)) = B,,, exp [-i(s,,,,clg, + A,,,g,,,.)] 

with m, n o { l , . . . ,  l} 

in which s,.,, has been defined in (19), L,,,, in (49) 

I ,[2G,.QILm. I] 
Io[2G,.G. IL,..I] for m ~ n and B , . , . -  1.0 

I.0 for m_<n 
g,.,, = (62) 

s,,,, for m > n, 

Ii and I0 are modified Bessel functions. 
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Each ~ can be expressed via (62) in both q~'s of 
a qtm, ( i # m , i # n )  equally likely so a g t  with 
u <  r e { I , . . . ,  l} can be expressed as 

P (  q'.,o l R I  , . . . , R , )  

= C'  exp E G,,,G,,IL,,,,,IB,,,,,B,,o 
-1 n=2 
rn#n 

m ~ v ; n # u  

x cos (rib,, + S. .v~  + s..,,,g,.,,,A,,,, 

- s, ,gv,A ~, - s,,,,g,,,,,A,,,) I 
1 

(63) 

with C'  a normalization constant. 

7. The joint probability distribution of three sets of 
four isomorphous structure factors in space group P1 

A j.p.d, involving non-isomorphous s.f.'s can be con- 
structed in a simple way from the expression for the 
general term for isomorphous s.f.'s. In this paper the 
distribution for the triplet invariant will be considered 
with H and K linearly independent 

0 = ~P, + ~PK + ~P-H-K. (64) 

For each of the s.f.'s Fn, FK and F - H - r ,  four 
isomorphous alternatives are included which comes 
down to constructing a j.p.d, of 12 s.f.'s. 

The following s.f. notations will be employed: 

Fa= F.o, Fb= Fnb and F~= FH~ 

with 

and 

Ha = san,  lib = sbK 

H ~ = s ~ ( - H - K )  { a , b , c }  

with {a, b, c} meaning a = 1 , . . . , 4 ;  b = 5 , . . . ,  8 and 
c = 9 , . . . ,  12 and 

sa = +1 if Ha = +H, sb = :el if H b = +K, 

s ¢ = ± l  i f H c = + ( - H - K )  

or, equivalently, 

F, = F , .  {n} (65) 

with {n} meaning n =  1 , . . . ,  12 and H, and s, as 
given above. 

The subscript a is used exclusively for the isomor- 
phous F , ,  b for the isomorphous FK and c for the 
isomorphous F _ , _  K. 

The r.v.'s for the s.f. magnitude and phase are 
referred to as R, and ~ ,  with the same conventions 
{n} and {a, b, c}. 

The general term of the j.p.d, of R I , . . . ,  R12 and 
q51, . . . ,  q~2 can be set up similar to (21). However, 
no combination of two reflections (Ha, H~), (Ha, H,.) 

or (Fib, H~) with {a, b, c} satisfies (17). As a result, 
the integrations for ( H I , . . . , / - / 4 )  on one hand, those 
concerning ( H s , . . . , / - / 8 )  on the other hand and 
finally those for ( H g , . . . ,  Ht2)  c a n  be executed 
independently so the general term GT ( H i , . . . ,  Ht2) 
becomes the product of three distinct general terms, 
one for each of the isomorphous sets 

GT (HI , .  • . ,  HI2) 

= G T  ( H , , . . . ,  H,) 

x G T ( H s , . . . , H 8 )  G T ( H 9 , . . . , H I 2 ) .  (66) 

The j.p.d, correct up to 0 (N  -t/2) requires an 
expansion of the exponential including only terms 
for which nmax = 3. Hence exp (x) = 1 + x with x all 
terms for which nmax---3 suffices. From (11) the 
existence condition for these terms can be inferred 
to be 

( 0" a - f l  a ) n a + ( 0" b - -  /3 b ) n b + ( 0" c - /3 c ) n c 

= 0  { a , b , c }  

with (67) 

Defining 

0"1 + / 3 1  "~" 0"2-1- ~ 2  + "  " ."Jr- O '12+/312 = 3.  

So = a o  - /3o,  Sb  = 0"b --  # b  

and (68) 

Sc=0"~- f l~  { a , b , c } ,  

two complementary sets of values turn out to con- 
tribute. 

Set I. 

S,,s~ = SbSb = Scs~ = 1 (69) 

and all other a ' s  and /3's zero {a, b, c}. 
For given Ha, Hb and H~ the so, sb and s~ are fixed 

so that So, Sb and S~ must be selected such that (69) 
and (70) hold. Obviously, 64 unique contributing 
(a, b, c) combinations exist in {a, b, c}. 

Set II. 

S,,Sa = SbSb = Scs,.= -1  {a, b, c}. (70) 

The 0" and /3 values of set II equal the /3 and a 
values, respectively, of set I. 

The values of set I lead to the existence of 64 unique 
triplets 

~obc= S,,q~,, + St, q~b + S,.~c {a, b, c}. (71) 

Those in set II correspond then with the -0ab,.. 
The ( a l , / 3 1 , . . . ,  a12,/312) combination of each of 

the 64 unique terms can be separated into three sets 
of eight summation indices ( a ~ , . . . ,  f14), (as ,  •. •, fiB) 



RENE PESCHAR AND H E N K  S C H E N K  437 

and (O~9,... ,~12)" The latter define the three (in 
general different) nested series expansions, 
Q ( H 1 , . . . ,  H4), Q ( H s , . . . ,  Hs) and Q ( H g , . . . ,  H,2),  
respectively. The complete series is the product of 
these three nested series. In addition, for each of the 
64 triplets in set I a scattering-factor product is present 
which can be noted as 

Zob,. = [Zobcl exp ( iAa~,,.)l 

z:~(%+~°~_-~(~+~_- ' ,~  +~, : ~hb ~c~ ' " 

N 

x E (l£ol°°+~°lf,~, % +~'~,.,j,:, '~ I°+~" ' 
j : l  

x exp { - i [ ( a a  -/3,,) 8jo + (at, -/3b)6jb 

+ ( a ¢ - f l c ) 6 j ¢ ] } )  {a ,b ,  c}. (72) 

Z*~b~ is the corresponding term for a triplet from set II. 
After transforming the series back to exponential 

form with 1 + x = e x p  (x), the j.p.d, correct up to 
O ( N  -1/2) can be expressed as 

P( O t ,  R l ,  . . . , CI912, Rl2) 

-.12 - I  = "tr I-I Gnz~. Cn. 
n = l  

x exp 2 2 Y~ [GaGo,lLoo,[ 
a ~ l  a ' = l  

a<a' 

x c o s  ( O, + s,,,cI)~,+ x~°)] 

8 8 

+2  Z Z [abab'[Lbt,'lCOS(CrPb+Sbb'CrPb'+Am,)] 
b=5 b '=5 

b <: b" 

12 12 

+2  E E [GcGc ' [L - . ' l c ° s (O~+s~ ' c I ) c '+&c)]  
c=9 c '=9 

c _~_ c" 

4 8 12 

C,,o o C~b; ~'-~C~¢~'+~' .' 
a = 1 b=5 c=9 

x [ Z o ~ c 0 ( H I , . . . ,  H4) Q ( H , , . . . ,  H~) 

x Q ( H g , . . . ,  H12) + Z*b,,Q*(Hl, • • •, 84) 

x Q * ( H 5 , . . . , H s ) Q * ( H g , . . . , H i 2 ) ] } .  (73) 

For most applications (73) will be cumbersome to 
use. More conveniently, the j.p.d, should be expressed 
directly in terms of the 64 triplets. For that pur- 
pose the product of the series Q ( H 1 , . . . ,  Hn), 
Q ( H s , . . . ,  Hs) and Q ( H g , . . . ,  Hi2) must be evalu- 
ated for each of the contributions in (73). This 
extremely time-consuming work has been carried out 
by a suitable computer program, taking approxi- 
mately 15 s CPU on a Cyber 750. A manual analysis 
of the results shows that a contributor of set I with 

an (a, b, c) combination can be expressed concisely as 

Q( H , ,  . . . , H 4 ) Q (  Hs ,  . . . , H s ) Q ( H 9 , . . . ,  H,2) 

= VaVbV,. (74) 

The function V,, is completely expressible in the 
variables of H i , . . . ,  H4, Vb in the variables of 
H 5 , . . . ,  H8 and Vc in those of H9, . . .  , Hi2: 

4 

V,, = ~ Go,e,,,,, exp [-iso,CI)o,] for a = 1 , . . . ,  4 

. ,=l  (75)  

with so, as defined in (65). 
If Ho, = H for a ' =  1 , . . . ,  4 the functions eoa, with 

ea,, = leo,,,[ exp (ie,,,) [ a, a '  e { 1 , . . . ,  4}] are 

ell = 1 + Di2a21 + D12A23a31 + D12A23A34a41 

+ D12A24a41 + D13a31 + Di3A34a41 + Dl4a41 

el2 = - ( D l 2 +  Di2A23a32 + Dl2A23A34a42 

+ Dl2A24a42 + Di3a32 + Dl3A34a42 + D14an2) 

e l 3  ---- - -  ( Dl2A23 + D I 2 A 2 3 A 3 4 a 4 3  q- D l 2 A 2 n a 4 3  

+ D l 3  + D 1 3 A 3 4 a 4 3  + D 1 4 a 4 3 )  

el4 = - ( Di2A23A34 + DI2A24 + D13A34 + Oi4) 

e21 = - (a21 + A23a31 + A23A3na41 + A24a41) 

e22 = 1 + A23a32 + A23A34a42 + A24a42 

e23 = A23  + m 2 3 A 3 4 a 4 3  + A 2 4 a 4 3  

e24 = A 2 3 A 3 4  + A 2 4  

e31 = _ ( a31  + A 3 4 a 4 1 ) ;  e32 = a 3 2 +  A 3 4 a 4 2  

e33 = 1 + A 3 4 a 4 3 ;  e34 = A 3 4  

e41 = - a41 ;  e,~2 = an2; en3 = a43 ;  e44 = 1 ( 7 6 )  

in which the following shorthand has been intro- 
duced: 

D,,,,, = dnti, C,,, n, for n < n ' ~ { l , . . . , 4 } .  (77) 

For each Hn = - H  the changes in the enn, are: 

Ant i '  ann' are replaced by a*nti, and Ati,, by * 

with n , n ' ~ { 1 , . . . , 4 } ;  (78) 

O n n '  dnn, are replaced by d*nti, and Dnn, by * 

with n , n ' ~ { 1 , . . . , 4 } ;  

Vb, Vc, ebb and e ,  are defined completely similarly to 
(75)-(77) with b' = 5 , . . . ,  8 and c' = 9 , . . . ,  12. 

As a result, the terms in (73) of 0(N t/2) become 

exp Y~ Y~ C, ,Ct ,  bC,.,. 
a = l  b=5 c=9 

+ Z o b c V a V * V * ] }  (79) x[Zo~cVoV~Vc * * 
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with 

4 8 12 

Va Vb V~ = Y, Y~ Y, G,,,Gb,G~,e,,,,ebb,ec~, 
a ' = l  b '=5  c ' = 9  

x exp [ - - i ( S a , ( l ) a , +  S b , f I ) b , " b  S c , ( I ) c , ) ] .  

Inspect ion of  (79) leads to the conclusion that  each 
triplet in set I contr ibutes to all 64 Z,,b~ terms. Since 
the summat ions  {a, b, c} concerning the Z,,b~ terms 
and the summat ions  {a', b', c'} over the phases are 
interchangeable,  a convenient  rearrangement  leads to 
a readily appl icable expression for the j.p.d, of the 
twelve s.f.'s. 

P(q~l, R I , . . . ,  t~12, R12) 

= zr G,,z,,,, C,,, exp 2 
L n = l  

4 4 

× ~ E [aaaa'lLaa'[C°S(~a+Saa'q)a'+Aaa')] 
a = !  a ' = l  a<_a" 

8 8 

+ 2  Y, ~ [GbGb, Lbb'[COS(~b+Sbb,~b,+)tbb,)] 
b = 5  b ' = 5  

b ~ b '  

12 12 

+2 E E [CcGAL~c.lCOS(~'c+~cc.~c.+A~.)] 
c = 9  c ' = 9  

c .,:z c , 

+2 ~ ~ G,,Gb,Gc, 
a 1 b ' = 5  c ' = 9  

4 8 12 

x Z E E C,,,CbbC~[e,,,,,[ [ebb'[ [e~,[ 
a = l  b = 5  c = 9  

× Izob l c o s  t S a ' ~ a '  "[- S b ' ~ ) b '  "[- Sc'(I)c" 

- e~ . -  ebb.-- ecc, +,a~b~]}) ]. (80) 

8. The joint probability distribution of triplets: a 
generalization to an arbitrary number of 

isomorphous structure factors 

The results presented in the previous section can be 
generalized to the j.p.d, of  triplets which exist amongst  
l i somorphous  s.f.'s Fu, l i somorphous  s.f.'s FK and 
l i somorphous  s.f.'s F-H-K with l an arbi t rary posi- 
tive number.  The total number  of  invariants amongst  
these s.f.'s up to 0 ( N  -~/2) is l x  l x l / 2  triplets and 
3 x I x (l - 1)/2 two-phase invariants. 

An analysis of  the results presented so far leads 
readily to the conclusion that  for this j.p.d, the 
definition of  the functions e.,, with n, n' ~ { 1 , . . . ,  l} 
is required. Only the case H,  = H needs to be dis- 
cussed since i f / 4 ,  = - H  (77) can be applied.  

Expression (76) shows that all e,,, are constructed 
solely from A, , , ,  a, , ,  and D, , , .  An analysis of  these 
terms leads to the following conclusion: 

Each e.,, consist of  the sum of  all possible single 
terms h,,., and all possible products  of  the form 
h,,,,h,,,,,~.., h,,~,, which comply  with two criteria: 

h.., = 

a. . ,  if 1 < n ' <  n 

A.. ,  if 1 < n < n' 

-D~ . ,  i f n = l  and n ' # l  

- a . ~  if 1 < n 

1 if n = n ' =  1; 

(8~) 

2. the product  h., , ,h. , .~. . ,  h. . . ,  consisting of  p 
terms (2 < p < l), has subscripts n ~ , . . . ,  np such that 

n < n~ < n 2 < . . . <  np> n'. (82) 

9. The conditional probability distributions of  the 
triplets 

The c.p.d. 's of  the three-phase s.i.'s can be calculated 
with the technique described in § 6. Each phase ~a,, 
~b, and ~c, with {a', b', c'} can be expressed in the 
phases qb,, ~v and ~w respectively of the three-phase 
s.i. gt~vw with { u, v, w}. With reference to (62) for ~a, 
two cases are possible: 

1. a ' =  u: cos [sa,q~,,,+...] 

becomes cos [s.,q~,, + . . . ] ;  

2. a ' #  u: cos [ s a , q ~ , + . . . ]  (83) 

becomes B~,,, cos (s.,q~, -sa,h,, , ,g~,,);  

q~b, and q~c, are handled similarly. 
The c.p.d, for ~,,vw = s, qL + svq~o + swq~w with 

{u, v, w} then becomes 

P( qt,,~w ] Ri , . . . , R12) 

= L- '  exp [21W,,o~l cos (~u~w - ~" .... )] 

with 

[ W.,~w[ exp ( -  i~',,~w) 

4 8 12 

a ' = l  b ' = 5  c ' = 9  

x E E CooC~C~c 
! b = 5  c = 9  

× leoo,llehb, lec~,l Zohclno~nb.onc.~ 
x exp [ - i ( e a o , +  ebb'+ ecc,--Aobc 

+S.'h.,',.g.'.+Sb')tb'ogb'~+S~'X~'wg~'~)]}. (84) 

10. Concluding remarks 

In this paper  a j.p.d, theory has been developed for 
three data sets { FH }, { FK } and { F_ H- K }, each consist- 
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ing of four isomorphous structure factors, by means 
of which the estimation of two-phase invariants and 
three-phase invariants present amongst them can be 
achieved. It has been shown that anomalous data 
{F,}  and {F-n} can be considered as two isomor- 
phous data sets, each corresponding with different 
isomorphous structures. As a result, anomalous-scat- 
tering and isomorphous-replacement data can be 
handled simultaneously. Indeed, the SAS formulae 
of Hauptman (1982b) and Giacovazzo (1983a) and 
the SIR expression of Giacovazzo, Cascarano & 
Zheng Chao-de (1988) are encompassed in (84). 

So far, encouraging test results have been obtained 
for ideal data with the SIR expressions (Hauptman, 
Potter & Weeks, 1982) and the SAS formulae (Haupt- 
man, 1982b; Giacovazzo, 1983a), using solely the 
diffraction data and the number and type of 
(anomalous) scatterers. It is expected that the prob- 
abilistic fusion of both techniques, as presented in 
this paper, may enforce the strength of direct methods 
appreciably. Currently procedures are being devel- 
oped in order to test the quality of prediction of the 
new joint probability distribution. 

The derivation procedure described so far requires 
no prior information except the quantity and type of 
anomalous scatterers. This may be advantageous 
because there is no need to solve the heavy-atom 
substructure first. On the other hand, it has been 
shown by various authors that heavy-atom phase 
information may improve the quality of prediction 
of the SIR and SAS expressions. The absolute values 
of the two-phase invariants can be calculated from 
the heavy-atom positions, leaving only their signs to 
be determined. Once the latter are available, the 
calculated two-phase estimates can be used as an 
alternative to (62) in getting three-phase-invariant 
estimates. The problem of determining these signs 
has been tackled in several ways. Fortier, Fraser & 
Moore (1986) and Fortier, Moore & Fraser (1985) 
advocated an analysis of the three-phase-invariant 
values for the eight possible sign combinations. In 
spite of the clustering around a few values, the sign 
ambiguity could not be solved uniquely. Hao Quan 
& Fan Hai-fu (1988) employed probabilistic sign 
estimates which rely on the assumption that the 
triplets of the heavy-atom substructure are equal to 
zero. 

Although the above-described methods to incor- 
porate additional structural knowledge may be 
combined with the newly derived j.p.d., a more 
appropriate method seems to be possible. Knowledge 
concerning the atomic positions, e.g. the heavy-atom 
substructure, directly affects the allowable distribu- 
tions for the p.r.v.'s. Introduction of this knowledge 
in the derivation of the joint probability distribution 
may turn out to be more advantageous than its 
introduction afterwards. A paper on this subject is in 
preparation. 

A P P E N D I X  I 

Consider the integral 

o o 2 : r  

i= l z r -Z( i /2 )M'+M ~ ~ pM+M'+, 
0 0 

xexp [ I 2 - aP - io Y~ Ck COS ( 0 + ~k) 
k 

+ i O ( M ' -  M ) ]  dO do (I.1) 

in which the Ck are complex-valued and M'  and M 
non-negative integers. 

Expressing c k = a k + i b k  (ak and bk real) and 
defining 

A exp ( ia)  = Y, ak exp (i~k) 
k 

and (I.2) 

B exp (ifl) = Y~ bk exp (isrk), 
k 

one gets 

Ck COS ( O + ~k ) = A cos ( O + a ) + iB cos ( O + fl ). 
k 

(I.3) 

If one invokes the expansions in normal and modified 
Bessel functions 

and 

exp [ - i p A  cos (0+  a)]  

oo 

= ~. i " , J , , , ( - p A )  e x p [ i m , ( O + a ) ]  
m I = - o o  

(I.4) 

exp [pB cos (0+/3)]  
oo 

= ~ l,,,2(pB) exp[ im2(O+f l ) ] ,  
m 2 =  --oo 

(1.5) 

the 0 integration in (I.1) becomes 

277" 

exp [ iO( M ' -  M + m, + mz)] dO 
0 

={2~r for m 2 + m ~ + M ' - M = O  

0 for r n 2 + m ~ + M ' - M ~ O .  
(I.6) 

With the help of the relations amongst Bessel func- 
tions, 

J , , ( x ) = ( - i ) " l , ( i x )  (I.7) 

and 

J _ , ( x ) = ( - 1 ) " J , , ( x ) ,  (I.8) 
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and employment  of  (I .2)-(I .6) ,  integral (I. 1 ) reduces 
to 

I _ 

( -1 )  M 
rr2M+M,+, exp [ i ( M -  M')/3]  

oc 

m I = - o o  

0 

x e x p [ i m , ( a - / 3 ) ] p  M'+M+' exp [ - I p 2 ]  do. (1.9) 

Gra f ' s  summat ion  theorem for Bessel functions 
(Watson, 1952, p. 394) and (I.8) simplifies (I.9) to 

I _ 

with 

( - 1 )  M' 
rr2M+M.+~ exp [ i ( M  - M' ) ( f l  - y)] 

:X3 

x f JM,_M(pC)p M'+M+' exp [ - t O  2 ] do 

0 

C 2= A 2 -  B 2 + 2 i A B  cos ( a - / 3 )  

(I.lO) 

and ( I . l l )  

exp (2 iT )=  {iB + A exp [ - i ( a  - /3)]}  

x {iB + A exp [ i ( a - / 3 ) ] } - ' .  

With the definition 

X = A exp ( i a )+  iB exp (i/3) 

and (I.12) 

Y = A exp ( - i a ) +  iB exp (- i /3) ,  

C 2 =  X y  

(I. 11 ) becomes 

with (I.13) 

exp ( i2y)  = Y e x p ( i / 3 ) [ X  exp ( - i / 3 ) ] - ' .  

The p integration in (I.10) can be shown to result 
in (Naya  et al., 1965) 

I=[( - -1 )M'M' ! / ,n  -] 

x exp ( - X Y )  exp [ i ( M  - M')(/3 - y)]  

x L ~ : M ' ( X Y ) ( X Y )  tM-M''/2 (I.14) 

with L~,  -M' the associated Laguerre polynomial .  
From (I.13) and ( X Y )  = [X exp (i/3) Y exp ( - i f l ) ]  

it is easily shown that 

e x p [ i ( M -  M ' ) ( f l - y ) ] ( X y )  IM-M'~/2 = X M-M' 

(I.15) 

By incorporat ion of the formula for the associated 
Laguerre polynomial  

L ~ - M ' ( x )  = k~ ° (I.16) 
= ( M ' - k ) ! '  

the final expression for (I.1) becomes 

I = ~r -~ exp [ - -XY]KM,  M,(X, Y)  (I.17) 

witla 

KM, M'(X, Y ) =  M'!  7. x M - k y  M'-k 
k=0 ( M ' - k ) !  

(I.18) 

If X and Y each consist of a sum of p terms (p  > 0), 

X = x, + x 2 + . . . + x p  
p > 0 ,  

Y = yI + y2 +. . . + Yp 

each term in (I.18) can be expressed as an eightfold 
summat ion  

X M - k  y M ' - k = ( M _ k ) ! ( M , _ k )  ! 

r I rp M - k  X I . . .  X p  
× Z 

r I . . . . . .  4=0 r l !  . . . rp ! 
rt+...+ra= M - k  

M ' -  k tp 
× Z Y t I ' ' ' ' Y P  

t ...... ,4=o t 1 ! . . .  tp! 
t l+ . . .+ t4=M' -k  

(I.19) 
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